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Random walks on the general linear group
For any integer d ≥ 1, set V = Rd.
(V can also be Cd or Kd, where K is a local field.)
Fix an orthonormal basis e1, . . . , ed of V.
Let V∗ be the dual vector space of V.
Let (gn)n≥1 be a sequence of independent and identically
distributed random elements with law µ on the general linear
group GL(V).
Consider the random walk (or products of random matrices)

Gn = gn...g1.

In this talk, we are interested in large deviations for the
coefficients ⟨f ,Gnv⟩, where v ∈ V \ {0} and f ∈ V∗ \ {0}.
In particular, taking v = ej and f = e∗i , we get the (i, j)-th coefficient
Gi,j

n := ⟨e∗i ,Gnej⟩.
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Moment condition and condition (IP)

For g ∈ GL(V), set ∥g∥ = supv∈Rd\{0}
∥gv∥
∥v∥ and N(g) = max{∥g∥, ∥g−1∥}.

Exponential moment condition
There exists a constant η > 0 such that E[N(g)η] <∞.

We say µ has p-th moment if E[logp N(g)] <∞ for p > 0.

Let Γµ be the smallest closed semigroup generated by suppµ.

A matrix g ∈ GL(V) is called proximal if it has an eigenvalue λ with
multiplicity one and all other eigenvalues of g have modulus strcitly less
than |λ|.

Condition (IP)
(i)(Strong irreducibility) No finite union of proper subspaces of Rd is
Γµ-invariant.
(ii)(Proximality) Γµ contains a proximal matrix.
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Laws of large numbers: (1)

Theorem (Guivarc’h-Raugi, PTRF 1985; Benoist-Quint, Springer 2016)

Assume the exponential moment condition and condition (IP). Then,
for any v ∈ V \ {0} and f ∈ V∗ \ {0},

lim
n→∞

1
n
log |⟨f ,Gnv⟩| = λ a.s. SLLN (1.1)

where λ is a constant called the first Lyapunov exponent of µ.

Note: Furstenberg-Kesten (Ann. Math. Statist. 1960) established the
SLLN for ∥Gn∥: if E log+ ∥g1∥ < +∞, then

lim
n→∞

1
n
log ∥Gn∥ = λ a.s.

It can be seen as a corollary of Kingman’s subadditive ergodic theorem
(Ann. Probab. 1973).
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Laws of large numbers: (2)
Assume condition (IP).

Theorem (Grama-Liu-X., arXiv 2021)
If
∫

GL(V) logN(g)µ(dg) <∞, then, as n → ∞, uniformly in v ∈ V and
f ∈ V∗ with ∥v∥ = ∥f∥ = 1,

1
n
log |⟨f ,Gnv⟩| → λ in probability and in L1. WLLN (1.2)

Moreover, if
∫

GL(V) log
2 N(g)µ(dg) <∞, then the SLLN for ⟨f ,Gnv⟩

holds.

Open question: whether the SLLN holds true for ⟨f ,Gnv⟩ under the first
moment condition.

Benoist-Quint (Random walks on groups, 2016): "It is plausible."

Benoist-Quint: Stationary measures and invariant subsets of homogeneous
spaces (I, II, III), Ann. Math. 2011, JAMS 2013, Ann. Math. 2013.
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Central limit theorem

Theorem (Guivarc’h-Raugi, PTRF 1985)
Assume the exponential moment condition and condition (IP). Then,
for any t ∈ R, v ∈ V \ {0} and f ∈ V∗ \ {0},

lim
n→∞

P
(
log |⟨f ,Gnv⟩| − nλ

σ
√

n
≤ t

)
= Φ(t), (1.3)

where σ2 > 0 is the asymptotic variance and Φ(t) = 1√
2π

∫ t
−∞ e−

u2
2 du.

Benoist-Quint (AOP 2016) proved (1.3) under the second moment
condition and condition (IP). The proof borrows some ideas from
Bourgain, J., Furman, A., Lindenstrauss, E., Mozes, S.: Stationary measures and equidistribution

for orbits of nonabelian semigroups on the torus. J. Am. Math. Soc. 24, 231-280 (2011)
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Related results
Assume condition (IP).

1 Berry-Esseen bounds:
▶ Under the exponential moment condition,

Cuny-Dedecker-Merlevède-Peligrad (Comptes Rendus.
Mathématique 2022) obtained the rate c log n√

n .

▶ Under the exponential moment condition, Dinh-Kaufmann-Wu (J.
Inst. Math. Jussieu 2022) improved it to be c√

n .

▶ Under the third moment condition, Dinh-Kaufmann-Wu (PTRF
2023) obtained the rate c√

n for 2 × 2 matrices.

2 First-order Edgeworth expansion: by Grama-Liu-X. (arXiv 2021).

3 Local limit theorem: by Grama-Quint-X. (AIHP 2022).

4 Moderate deviations: by Grama-Liu-X. (SPA 2023).

Open problem: how to obtain the Berry-Esseen bound and the
first-order Edgeworth expansion under the third moment condition.
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Objectives and known result

We study the rate of convergence in the law of large numbers.
1 Bahadur-Rao type large deviations: for q > λ, as n → ∞,

P(log |⟨f ,Gnv⟩| ≥ nq) ∼?

2 Petrov type large deviations: with a "small" perturbation |l| ≤ ln on
q, where ln → 0 as n → ∞,

P
(
log |⟨f ,Gnv⟩| ≥ n(q + l)

)
∼?

Theorem (Benoist-Quint, 2016)
For any v ∈ V \ {0} and f ∈ V∗ \ {0}, there exist c,C > 0 such that

P
(
log |⟨f ,Gnv⟩| ≥ nq

)
≤ Ce−cn.
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Banach space and Markov chain
1 Let C (P(V)) be the space of continuous complex-valued functions on

P(V). For γ > 0 and φ ∈ C (P(V)), set

∥φ∥γ := ∥φ∥∞ + [φ]γ , ∥φ∥∞ := sup
x∈P(V)

|φ(x)|, [φ]γ := sup
x,x′∈P(V)

|φ(x)− φ(x′)|
d(x, x′)γ

,

where d(x, x′) = ∥v∧v′∥
∥v∥∥v′∥ for x = Rv and x′ = Rv′.

Introduce the Banach space Bγ := {φ ∈ C (P(V)) : ∥φ∥γ < +∞}.
2 Denote Xx

0 := x and g·x := Rgv for g ∈ GL(V) and x = Rv ∈ P(V).
Let Xx

n := Gn ·x = RGnv for x = Rv ∈ P(V) with v ∈ V \ {0}.
Then (Xx

n)n≥0 is a Markov chain on the projective space P(V).
3 The transfer operator of the Markov chain (Xx

n)n≥0 is given by

Pφ(x) =
∫

GL(V)

φ(g·x)µ(dg).

4 Spectral gap (Le Page 1982): there exists a unique invariant probability
measure ν on P(V) satisfying

∥Pnφ(x)− ν(φ)∥γ ≤ Ce−cn.

12/37



Laplace transform

1 Let Iµ = {s ≥ 0 : E(∥g1∥s) <∞} and let I◦µ be its interior.
2 Laplace transform of the Markov random walk: for s ∈ Iµ, define

Psφ(x) =
∫

GL(V)
esσ(g,x)φ(g · x)µ(dg), x ∈ P(V),

where, for g ∈ GL(V) and x = Rv ∈ P(V),

σ(g, x) = log
∥gv∥
∥v∥

is a cocycle.
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Guivarc’h-Le Page’s spectral gap theory (2016)

1 For s ∈ Iµ, set

κ(s) = lim
n→∞

(E∥Gn∥s)
1
n .

Define Λ(s) = log κ(s) and its Legendre transform:

Λ∗(q) = sup
s∈Iµ

{sq − Λ(s)}, q ∈ Λ′(Iµ).

2 There exist a unique eigenfunction rs and a unique eigenmeasure νs:

Psrs(x) = κ(s)rs(x), νsPs(φ) = κ(s)νs(φ).

Moreover,

rs(x) =
∫
P(V∗)

δ(y, x)sν∗s (dy),

where δ(y, x) = |⟨f ,v⟩|
∥f∥∥v∥ for x = Rv ∈ P(V) and y = Rf ∈ P(V∗).
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Bahadur-Rao type precise LD for the coefficients
Assume (IP) and exponential moments.
Let s ∈ I◦µ and q = Λ′(s).
Notation: σs = Λ′′(s), x = Rv ∈ P(V) and y = Rf ∈ P(V∗).

Theorem (Grama-Liu-X., AOP 2023, Bahadur-Rao type LD)
Uniformly in v ∈ V and f ∈ V∗ with ∥v∥ = ∥f∥ = 1,

P
(
log |⟨f ,Gnv⟩| ≥ nq

)
∼ rs(x)r∗s (y)

νs(rs)

exp (−nΛ∗(q))
sσs

√
2πn

.

Here, r∗s is the eigenfunction of the dual operator P∗
s defined by

P∗
sφ(y) =

∫
GL(V)

esσ(g∗,y)φ(g∗ ·y)µ(dg), y ∈ P(V∗),

where g∗ denotes the adjoint automorphism of g ∈ GL(V).
This improves the result of Benoist-Quint (2016):

P
(
log |⟨f ,Gnv⟩| ≥ nq

)
≤ Ce−cn.
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Petrov type precise LD for the coefficients
Assume (IP) and exponential moments.

Let s ∈ I◦µ and q = Λ′(s); x = Rv ∈ P(V) and y = Rf ∈ P(V∗).

Let {ln} be any positive sequence such that ln → 0 as n → ∞.

Theorem (Grama-Liu-X., AOP 2023, Petrov type LD)
Uniformly in |l| ≤ ln, v ∈ V and f ∈ V∗ with ∥v∥ = ∥f∥ = 1,

P
(
log |⟨f ,Gnv⟩| ≥ n(q + l)

)
∼ rs(x)r∗s (y)

νs(rs)

exp (−nΛ∗(q + l))
sσs

√
2πn

.

We have Λ∗(q + l) = Λ∗(q) + sl + l2
2σ2

s
− l3

σ3
s
ζs
( l
σs

)
, where ζs is the Cramér

series given by

ζs(t) =
γs,3

6γ3/2
s,2

+
γs,4γs,2 − 3γ2

s,3

24γ3
s,2

t +
γs,5γ

2
s,2 − 10γs,4γs,3γs,2 + 15γ3

s,3

120γ9/2
s,2

t2 + . . .

with γs,k = Λ(k)(s) for any k ≥ 1.
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Bahadur-Rao-Petrov type LD: lower tails
Assume (IP) and exponential moments.
Let {ln} be any positive sequence such that ln → 0 as n → ∞.

Theorem (Grama-Liu-X., AOP 2023, Petrov type LD)
There exists a constant s0 > 0 such that for any s ∈ (−s0, 0) and
q = Λ′(s), uniformly in |l| ≤ ln, v ∈ V and f ∈ V∗ with ∥v∥ = ∥f∥ = 1,

P(log |⟨f ,Gnv⟩| ≤ n(q + l)) ∼ rs(x)r∗s (y)
νs(rs)

exp (−nΛ∗(q + l))
−sσs

√
2πn

.

Taking l = 0, we get the Bahadur-Rao type LD result.
Open problem: as n → ∞,

P(log |⟨f ,Gnv⟩| ≤ nq) ∼?

in the case when q < λ is arbitrary (q is not necessarily sufficient
close to the Lyapunov exponent λ).
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Applications to local limit theorems with LD
Assume (IP) and exponential moments.

Let s ∈ I◦µ and q = Λ′(s); x = Rv ∈ P(V) and y = Rf ∈ P(V∗).

Let {ln} be any positive sequence such that ln → 0 as n → ∞.

Theorem (Grama-Liu-X., AOP 2023, Local limit theorem with
large deviations)
There exists a sequence ∆n > 0 converging to 0 as n → ∞ such that,
uniformly in |a| ≤ nln, ∆ ∈ [∆n, nln], v ∈ V and f ∈ V∗ with ∥v∥ = ∥f∥ = 1,

P
(
log |⟨f ,Gnv⟩| ∈ [a, a +∆] + nq

)
∼

(
1 − e−s∆) rs(x)r∗s (y)

νs(rs)

exp
(
−nΛ∗(q + a

n)
)

sσs
√

2πn
.

When |a| = o(
√

n), the exponential term can be written as

exp
(
−nΛ∗

(
q +

a
n

))
∼ e−sae−nΛ∗(q).

We also obtained similar results for s ∈ (−s0, 0).
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Key ideas of the proof: (1)
Recall: the SLLN, CLT, LIL, LD bounds are proved using a comparison between
|⟨f ,Gnv⟩| and ∥Gnv∥: e.g., in the proof of SLLN, one uses 1

nε log |⟨f ,Gnv⟩|
∥Gnv∥ → 0, a.s.

Classical approach to establish precise LD: prove an Edgeworth expansion under the
changed measure, cf. Bahadur-Rao (1960), Petrov (1965), Dembo-Zeitouni (1998).

Our approach:

Step 1 (Decomposition):

We start with an exact decomposition: for any x = Rv ∈ P(V) and
y = Rf ∈ P(V∗) with ∥v∥ = ∥f∥ = 1,

log |⟨f ,Gnv⟩| = log ∥Gnv∥+ log δ(y,Gn ·x)
= σ(Gn, x) + log δ(y,Xx

n),

where δ(y, x) = |⟨f ,v⟩|
∥f∥∥v∥ .

We would like to use LD asymptotics or the Edgeworth expansion for the couple
(Xx

n, log ∥Gnv∥) with target functions (cf. Grama-Liu-X., SPA 2021, JEMS 2022).

The difficulty: the Markov chain Xx
n may stay in or very close to the hyperplane

ker f = {x ∈ P(V) : δ(y, x) = 0}, where y = Rf ∈ P(V∗).
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Key ideas of the proof: (2a)

Step 2 (Discretization–we discretize the function log |δ(y, ·)|):

Let U(t) = t for t ∈ [0, 1], U(t) = 0 for t < 0 and U(t) = 1 for t > 1.
Let η ∈ (0, 1

2 ] be a constant. For any integer k ≥ 0, define

Uk(t) = U
(

t − η(k − 1)
η

)
, hk(t) = Uk(t)− Uk+1(t), t ∈ R.

For any x ∈ P(V) and y ∈ P(V∗), set

χy
k(x) = hk(− log δ(y, x)) and χy

k(x) = Uk(− log δ(y, x)).

We have the following partition of the unity on P(V):

∞∑
k=0

χy
k(x) = 1,

Mn−1∑
k=0

χy
k(x) + χy

Mn
(x) = 1. (3.1)
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Key ideas of the proof: (2b)

Lemma 1 (Grama-Liu-X., AOP 2023)
There exists a constant c > 0 such that for any γ ∈ (0, 1], k ≥ 0 and
y ∈ P(V∗), we have χy

k ∈ Bγ and ∥χy
k∥γ ≤ ceγηk

ηγ .

Let Mn = ⌊A log n⌋ with A > 0. Denote

φy
s,k = r−1

s χy
k for 0 ≤ k ≤ Mn − 1, φy

s,Mn
= r−1

s χy
Mn
. (3.2)

Then r−1
s =

∑Mn
k=0 φ

y
s,k.
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Key ideas of the proof: (3a)
Step 3 (A change of measure and smoothing techniques):

Denote Tv
n = log ∥Gnv∥ − nq. By the change of measure formula,

P
(
log |⟨f ,Gnv⟩| ≥ nq

)
= rs(x)e−nΛ∗(q)EQx

s

[
r−1

s (Xx
n)e

−sTv
n1{Tv

n+log δ(y,Xx
n)≥0}

]
= rs(x)e−nΛ∗(q)

Mn∑
k=0

EQx
s

[
φy

s,k(X
x
n)e

−sTv
n1{Tv

n+log δ(y,Xx
n)≥0}

]
=: rs(x)e−nΛ∗(q)

Mn∑
k=0

Fn,k.

For k = Mn, we have Fn,Mn = o( 1√
n ).

For 0 ≤ k ≤ Mn − 1, since log δ(y, x) ≤ −η(k + 1) when x ∈ suppφy
s,k, we get

Mn−1∑
k=0

Fn,k ≤
Mn−1∑
k=0

EQx
s

[
φy

s,k(X
x
n)e

−sTv
n1{Tv

n−η(k+1)≥0}

]
=:

Mn−1∑
k=0

Hn,k. (3.3)

23/37



Key ideas of the proof: (3b)

We then use smoothing techniques and the Fourier inversion formula:

Fix a non-negative density function ρ on R with
∫
R ρ(u)du = 1, whose Fourier

transform ρ̂ is supported on [−1, 1]. Moreover, we take ρ such that there
exists a constant c > 0 such that ρ(u) ≤ c

1+|u|p for all p > 1 and u ∈ R.

For any ε > 0, define the scaled density function ρε by ρε(u) = 1
ερ(

u
ε ), u ∈ R.

Using the Fourier inversion formula, we obtain

Mn−1∑
k=0

Hn,k ≈
1

2π

Mn−1∑
k=0

e−sη(k+1)
∫
R

e−itη(k+1)Rn
s,it

(
φy

s,k

)
(x)Ψ̂+

s,η,ε(t)ρ̂ε2(t)dt

where the perturbed transfer operator Rs,it pops out.
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Key ideas of the proof: (4a)

Step 4 (Using spectral gap properties of Rs,it):

1 The perturbed operator Rs,it is the Fourier transform of the norm
cocycle under the changed measure Qx

s : with q = Λ′(s),

Rs,itφ(x) = EQx
s

[
eit(σ(g,x)−q)φ(g · x)

]
.

2 Spectral gap: for small δ > 0 and t ∈ (−δ, δ),

Rn
s,it = λn

s,itΠs,it + Nn
s,it,

where

λs,it:= e−itqκ(s + it)
κ(s)

= 1 − σ2
s

2
t2 − i

Λ′′′(s)
6

t3 + o(t3),

with σs > 0 (under condition (IP)).
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3 Πs,0φ = πs(φ). For any compact set K ⊂ I◦µ and integer k ≥ 0,
there exist C > 0 and 0 < a < 1 such that

sup
s∈K

sup
|t|<δ

∥ dk

dtkΠs,it∥Bγ→Bγ ≤ C,

sup
s∈K

sup
|t|<δ

∥ dk

dtk Nn
s,it∥Bγ→Bγ ≤ Can.

4 For any compact sets K ⊂ I◦µ and T ⊆ R\{0}, there exists C > 0
such that

sup
s∈K

sup
t∈T

sup
x∈P(V)

|Rn
s,itφ(x)| ≤ e−Cn∥φ∥γ .

Proof strategy:
Perturbation theorem applied to Ps, together with the relation between the
operators Rs,it and Pz;

Lemma of Hennion and Hervé (2001): lim supt→s ϱ(P(t)) ≤ ϱ(P(s)).
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Key ideas of the proof: (4b)

We then make use of the asymptotic expansion of the integral of Rs,it:

Proposition (Grama-Liu-X., JEMS 2022)
For any compact set K ⊂ I◦µ, uniformly in s ∈ K, x ∈ P(V), |l| ≤ 1√

n and
φ ∈ Bγ ,∣∣∣∣σs

√
n

2π
e

nl2

2σ2
s

∫
R

e−itlnRn
s,it(φ)(x)ψ(t)dt − ψ(0)πs(φ)

∣∣∣∣
≤ C√

n
∥φ∥γ +

C
n
∥φ∥γ sup

|t|≤δ

(
|ψ(t)|+ |ψ′(t)|

)
+ Ce−cn∥φ∥γ

∫
R
|ψ(t)|dt.

Note that ∥φy
s,k∥γ → ∞ as k → ∞.
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Key ideas of the proof: (5a)
Step 5 (Patch up the pieces using the Hölder regularity of the measure πs):

Under the measure Qx
s , the Markov chain (Xx

n)n≥0 has a unique invariant
probability measure πs on P(V).

Lemma (Grama-Liu-X., AOP 2023)
Let K ⊆ I◦µ be any compact set. Then there exists a constant c > 0 such that
for any s ∈ K and y ∈ P(V∗),

Mn−1∑
k=0

e−sη(k+1)πs
(
φy

s,k

)
≤

∫
P(V)

δ(y, x)s r−1
s (x)πs(dx)

and

Mn−1∑
k=1

e−sη(k−1)πs
(
φy

s,k

)
≥

∫
P(V)

δ(y, x)s r−1
s (x)πs(dx)− c

n2 .

The proof of this lemma is based on the Hölder regularity of the invariant
measure πs, see the next page.
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Key ideas of the proof: (5b)

Denote B(y, r) = {x ∈ P(V) : δ(y, x) ≤ r} for y ∈ P(V∗) and r ≥ 0.

We can establish the following Hölder regularity of the invariant measure πs:

Theorem (Grama-Liu-X., AOP 2023)
For any s ∈ I◦µ, there exists α > 0 such that

sup
y∈P(V∗)

∫
P(V)

1
δ(y, x)α

πs(dx) < +∞.

In particular, there exist α, c > 0 such that for any 0 < r < 1,

sup
y∈P(V∗)

πs
(
B(y, r)

)
≤ crα.

Bourgain J.: Finitely supported measures on SL2(R) which are absolutely continuous at infinity.
Geometric aspects of functional analysis, 133-141, 2012.

29/37



Outline

1 Background

2 Large deviation expansions for the coefficients

3 Key ideas of the proof

4 Applications to multivariate perpetuity sequences

30/37



Potential applications of LD for the coefficients

1 Multi-type branching processes in random environments.

2 Limit theorems for first passage times of multivariate perpetuity
sequences initiated by Kesten (Acta Math. 1973).

Perpetuity sequences arise in the ARCH and GARCH financial time
series models, branching processes and branching random walks, and
can be applied to the Quicksort algorithm in computer science and
recently to modern machine learning.
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Multivariate perpetuity sequences
1 We are interested in the tail behaviors of the multivariate perpetuity

sequence: with V1 = Q1 and n ≥ 2,

Vn = Q1 + M1Q2 + · · ·+ (M1 . . .Mn−1)Qn,

where (Mn,Qn)n≥1 is an i.i.d. sequence, M1 is a d × d random matrix with
nonnegative entries, and Q1 is a nonnegative random vector in Rd.

2 If E(log ∥M1∥) + E(log ∥Q1∥) <∞ and the first Lyapunov exponent λ of
(Mn)n≥1 is negative, then Vn converges almost surely to the random
variable

V = Q1 +

∞∑
n=2

(M1 . . .Mn−1)Qn,

which satisfies the random difference equation

V d
= MV + Q,

where (M,Q) is an independent copy of (M1,Q1), and V is independent
of (M,Q).
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Multivariate perpetuity sequences

1 We study the asymptotic properties of the first passage time

τ y
u = inf{n ≥ 1 : ⟨y,Vn⟩ > u}, u → +∞,

where y ∈ Sd−1
+ = {v ∈ Rd

+ : ∥v∥ = 1}.
2 Kesten (1973, Acta Math.) exhibited the heavy-tailed characteristics of

V: under suitable conditions on (M1,Q1), there exist constants Cy > 0
and α > 0 such that

P (τ y
u <∞) = P(⟨y,V⟩ > u) ∼ Cyu−α, as u → +∞.
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Weak law of large numbers

For any s ∈ Iµ, define κ(s) = limn→∞ (E∥Gn∥s)
1
n and Λ = log κ. Assume

that there exists a constant α ∈ I◦µ such that

Λ(α) = 0. (4.1)

Set ρ = Λ′(α).

Theorem (Weak law of large numbers, Mentemeier-X., arXiv 2023)
For any ε > 0, we have

lim
u→∞

P
(∣∣∣∣ τ y

u

log u
− ρ

∣∣∣∣ > ε

∣∣∣∣ τ y
u <∞

)
= 0.
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Central limit theorem

Notation: ρ = Λ′(α) > 0 and σ2
α = Λ′′(α) > 0.

Theorem (Mentemeier-X., arXiv 2023)
For any t ∈ R, we have

lim
u→∞

P
(

τ y
u − ρ log u

σαρ3/2
√
log u

≤ t
∣∣∣∣ τ y

u <∞
)

= Φ(t).

The Petrov type large deviation asymptotics for the coefficients play a crucial role.

We have also established
1 precise large deviation asymptotics P(τ y

u ≤ β log u), where β ∈ (0, ρ).
2 pointwise asymptotics P(τ y

u = [β log u]), where β ∈ (0, ρ).

These results extend those of Buraczewski et al. (AOP 2016) from the
one-dimensional setting to higher dimensions.
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